

Heisenberg Uncertainty Principle

It is impossible to determine both the position and the velocity of an electron at the same time.

Aufbau Principle

■ An electron occupies the lowest energy level available.

Pauli Exclusion Principle

- No 2 electrons in the same atom can have the same 4 identical quantum numbers.
- In other words, no two electrons can be in the same place at the same time.

1		L		I	
4		ľ			ı
3	ı		ł		L
	•				П

Hund's Rule

- Orbitals of equal energy are each occupied by ONE electron before any orbital is occupied by a SECOND electron
- All electrons in a single occupied orbital must have the same spin.

Orbital diagrams

- Shows each orbital as a box or line to be filled in.
- Follow order of filling.
- Hund's Rule Don't pair electrons in degenerate orbitals until necessary.
- Unpaired electrons have the same spin.
- Pauli exclusion principle two electrons can occupy the same orbital only by having opposite spin indicated by ↑ and ↓.

Principal Quantum Number	
 Symbol = n Represents the main energy level of the electron Range = 1-7 Ex. = 3s Principal Quantum number = 3 	

Angular Momer Number	ntum Quantum
 Symbol = I (small lette Represents the shape called sublevel) Range = 0 - 3 (whole Shapes: 	of the orbital (also
■ 0 = s (sphere) 2 = d (double petal)	1 = p (petal) 3 = f (flower)

Magnetic Quantum Number

- Symbol = m
- Represents the orientation of the orbital around the nucleus
- Each line holds 2 electrons

$$\frac{}{0} = s$$
 $\frac{}{0} = r$
 $\frac{}{-1} = r$

Magnetic Quantum Number (cont.)

Spin Quantum Number

- 2 Spin States
- Clockwise spin = +1/2 (upward arrow)
- Counterclockwise spin = -1/2 (downward arrow)

A Single orbital can hold two electrons, but they must have opposite spins

Quantum Numbers	
Pauli Exclusion Principle	
 No two electrons in an atom can have the same 4 quantum numbers. 	
– Each electron has a unique "address":	
1. Principal# \rightarrow energy level 2. Ang. Mom.# \rightarrow sublevel (s,p,d,f) 3. Magnetic# \rightarrow orbital 4. Spin# \rightarrow electron	
Courting Chairs color-material control and color agreement appearance	